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A~tract--Using the turbulence model for dispersed multiphase flows developed in Part I lint. J. 
Multiphase Flow 16, 323-340 (1990)], simple shear flows of a dense solid-fluid mixture are studied. The 
equations governing the transport of mass, momentum and fluctuation kinetic energy for different phases 
are reviewed and their simplified forms for the case of a simple shear flow are considered. The resulting 
algebraic equations for the fluctuation kinetic energies are solved by an iterative method and the variations 
of the normal and shear stresses with the shear rate and solid volume fraction are studied. Particular 
attention is given to the effects of the fluid phase. It is shown that the predictions of the model agree 
reasonably well with the available experimental data. 

Key Words: turbulent flow, multiphase mixture, simple shear, granular flow 

I N T R O D U C T I O N  

Understanding the dynamic behavior of turbulent multiphase flows has attracted considerable 
attention in recent years. Several models for dispersed two-phase turbulent flows were developed 
by Baw & Peskin (1971), Hetsroni & Sokolov (1972), Tawed & Landau (1977), Genchev & 
Karpuzov (1980), Elghobashi & Abou-Arab (1983) and Chen & Wood (1985). Extensive reviews 
of the literature on earlier works were provided by Soo (1967), Hetsroni (1982) and Ishii & Mishima 
(1984). These models were developed for relatively dilute mixtures and the particle-particle 
collisional effects and the fluctuation energy interactions between the fluid and particulate phases 
were, generally, neglected. Recently, Ma & Ahmadi (1985, 1986) developed a turbulence model for 
rapid flows of dense granular materials. Lun et al. (1984), Jenkins & Richman (1985, 1986), Ahmadi 
& Shahinpoor (1983) and Ahmadi & Ma (1986) formulated several elaborated kinetic theories for 
rapid flows of dense collections of idealized spherical granular particles. More recently, Ma & 
Ahmadi (1988) studied the consequences of interstitial fluid effects in the kinetic formulation. 

There appear to be several deficiencies in the current state of two-phase turbulent flow and rapid 
granular flow modelings. The available models are either limited to dilute mixtures or neglect the 
fluid effects altogether. In the work of Ahmadi & Ma (1990, this issue, pp. 323-340), which will 
be referred to as Part I hereafter, a phasic mass-weighted averaging technique was used and a 
thermomechanical formulation for multiphase flows was developed. A closed system of field 
equations for determining the velocity, solid volume fraction and fluctuation kinetic energies of 
different phases was obtained. The formulation includes transport equations for the fluctuation 
kinetic energies of the particulate phases in addition to that of the fluid phase. Therefore, the model 
is suitable for analyzing turbulent flows of relatively dense mixtures. 

In this work, the predictions of the turbulence model of Part I for dense flows are compared 
with the experimental data. In the following, the system of governing equations for a two-phase 
mixture is briefly reviewed. The special case of a simple shear flow of a dense mixture is carefully 
examined. It is shown that the governing equations reduce to a set of coupled nonlinear algebraic 
equations for the stresses and fluctuation energies. This system is solved by a numerical iterative 
scheme and the normal and shear stresses for different values of the parameters are evaluated. The 
variations of the normal and shear stresses with the solid volume fraction and shear rate are studied 
in detail and the predicted results are compared with the experimental data of Hanes & Inman 
(1985), Bagnold (1954) and Savage & McKeown (1983). Good agreement between the predictions 
of the present turbulence model and the available experimental data in the limit of rapid simple 
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shear flows of dense mixtures is observed. The contributions of the particulate and fluid phases 
to stresses and the effects of  particle inelasticity are also discussed. 

BASIC EQUATIONS 

In Part I, the general equations governing the transport of mass, momentum and fluctuation 
energy for multiphase mixtures were obtained. In the special case of an isothermal, fully-saturated 
two-phase flow with incompressible fluid and particulate constituents, these equations are given as: 

conservation of mass, 

and 

balance of linear momentum, 

and 

e l  + (vvj) = 0 [1] 

t~--7 + (~'fFf) = 0; [2] 

dffi ~3p r 
PV-d7  = pvf,. - v - -  - - -  [~,pvk + ~ (~  + ~T)em, m] 

~X~ dX~ 

(~ [ (~  .Ji- ~T) //¢~i ~V'/'~ I + Do(~,_ ~, ) t +ox,/ 

pr. rdv~ f~p f  2 ~ f f f f fT ~f 
" -dZ =Pfvff~-v ~ 3ex, [p v k +(~ +~ )Vm, m] 

"t" ~ [( ~l'l f "t" "1"1" ) t~Xj "t" ~XI. ) } -I" Do ('i -- ' ' ); 

balance of fluctuation kinetic energy, 

pv-dT: -( pvk Ox, Ox, i 

[31 

and 

[4] 

and 

~ I ( btfT'~ c3kf-] /~rr c~(vfpr) d(vrpf) 
Jr- /2 f J c - ~ - ~ ) ~ x i J - - I - o . f p p r v f k f  3 x  i l~xi -prvrEr+ 2O0(k - c k r ) ;  [6] 

saturation condition, 

v r + v = 1. [7] 

In these equations, v is the solid volume fraction,/9 is the constituent density, ~ is the mass-weighted 
average velocity, k is the fluctuation kinetic energy per unit mass, E is the dissipation rate per unit 
mass, f is the body force per unit mass, pf is the mean pressure in the fluid phase, # is the coefficient 
of  viscosity, #T is the coefficient of  turbulence (eddy) viscosity, a k is the turbulence Prandtl number 
for fluctuation energy and aP is a material parameter. The superscript f refers to the fluid phase 
and a symbol without a superscript represents a particulate phase quantity. 

fvfdkr 2(pfvrkf ~ fTI /~  ~f~t3~ 

~T ~(vpf) ~(vpr) 
-~ pvE + 2Do(ck f -  k) [5] 

~Ppvk ~xi ~xi 
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Equations [1]-[7] are 11 equations for determining the 11 unknowns t~i, t~, v, v r, k, k r and pr  
The other parameters in these equations are related to the main 11 independent variables described 
in Part I. The relationships which are relevant to the present case of two-phase flows are 
summarized in the following. 

The coefficients of turbulence viscosity for particulate and fluid phases, as obtained in Part I, 
are given as 

i.lr = C.UpvdkU2, #rr = Cf'~P fvf(kf)2 
Ef , [8] 

where 

C" = 0.0853[(Xv) -1 + 3.2 + 12.1824vx], C r~ = 0.09. 

The dissipation rates for the particulate and the fluid phases are given by 

(. = ak 3/2, ( . f  = ar(kr)3/2, 

with 

[9l 

[10] 

18 #fv [1 + 0.1(Red) °'Ts] 
Do---(d)2 :i__ Vx2.SVm , [15] 

~ ! Vm, " ] 

where the particle Reynolds number is defined as 

p r d l ~ - ~ , l  
Re d = #r ° [161 

The increase in drag due to the increase in solid volume fraction and particle Reynolds number 
is included in [15]. 

In [3] and [4], the effect of lift force is neglected. The more general version of the momentum 
equation, described in Part I, includes the lift forces and may be used as required. For the case 
of the simple shear flow studied in the following section, however, the effects of lift force vanish. 
Additional relationships were described in Part I but are not discussed in this section since they 
become irrelevant to the special case of the simple shear flows studied in the following. 

Here, the drag coefficient is given as 

C fD 3.9vz(1 - r:)  a r = [11] 
a =  d ' A f '  

where C rD = 0.165 is a constant and A r is a length macroscale of fluid turbulence. Here, it is 
assumed that the particles are spherical and nearly elastic with a diameter d and a coefficient of 
restitution r. The crowding effect of particles exhibits itself through the radial distribution function 
X. For spherical particles, it was found that (Ma & Ahmadi 1986; Ahmadi & Ma 1986): 

1 + 2.5v + 4.5904(v) 2 + 4.515439(v) 3 

with Vm = 0.64356. The increase in the particulate pressure is accounted for through the coefficient 
which is given as 

y = 5(1 + 4vX) + ~(1 - r:). [13] 

In [5] and [6], the coefficient ¢ is related to the ratio of the particle time scale pv/Do to the 
Lagrangian time macroscale of turbulence TL, i.e. 

1 0.165k r 
C = p V  ' T L = e f  [14] 

l + - -  
Doll 
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SIMPLE SHEAR FLOWS 

In this section, simple shear flows of relatively dense two-phase mixtures in the state of turbulent 
(rapid) motion are considered. Comparisons of the predictions of the present model with the 
experimental data of Hanes & Inman (1985), Bagnold (1954) and Savage & McKeown (1983) are 
also presented. 

Consider a steady simple shear flow with ~f(y) and ~(y) denoting the x-components of the 
fluid and particle velocities, respectively. Based on the constitutive equations developed for the 
particle and fluid stress tensors in Part I, the total normal and shear stresses for a simple shear 
flow are given as 

and 

[rj~ +pq  = }pf(1 - v)kf-{ - 7pvk [17] 

and 

and 

"OPf d I /~ f'r) dt~f ] + D0(/~ - fff) = 0. [20] 
(1 _ v)_~_x + ~y (/~f+ dy 

In the absence of a pressure gradient, [19] and [20] accept a simple shear flow solution given 
by 

~f= t7 = u(y), [21] 

du  
- -  = const. [22] 
dy 

That is, no slip between the mean particle and fluid velocities exists. (Consideration of the lift force 
does not alter this simple solution.) 

Using [21], [18] may be restated as 

(]~fT du 
~,2 = + pv) -d-yy" [231 

In a turbulent two-phase flow, the fluid viscosity #r is much smaller than the fluid turbulence 
viscosity pfT and the particle frictional rolling viscosity # is negligible; therefore, in the derivation 
of [23] the viscous and frictional stresses are neglected. 

Equations [17] and [23] show that the normal and shear stresses are functions of fluctuation 
energies k rand k. The evolution of these fluctuation energies is governed by [5] and [6]. For a steady 
simple shear flow, the diffusion and convection are absent and [5] and [6] simplify to 

#r (du ~ 2 
\ dy,] - pvE + 2Do(cU- k) = 0 [24] 

and 
2 

\dy,] - pf(1 - v)(~ f -  2Do(ck f -  k) = 0. [25] 

Using [8], and [10], and introducing the dimensionless particulate fluctuation energy and the 

dt~f T d~  
~12 = (/,l f "-]- /.1 fT) - ~  -}- (~/ -Jl= ],1 )-~fl.  [18] 

The stresses given by [17] and [18] include the contributions from both phases. 
For a steady shear flow, in the absence of body forces, the momentum equations given by [3] 

and [4] become 

~x  + ~ (~ + ~T) + Do(~ r -  a) -- 0 [19] 
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fluctuation energy ratio, 

[24] and [25] may be restated as 

and 

k f /~= k f ~ = _  
,t (duy' k' 

\ d y J  

[26] 

(C ~' - adl¢)Sov + (cf~ - 1)(]~) I/2 36V = 0 

1 -- V Y  '5~" l~e d 
Vmf 

[27] 

) ( c ~ -  1) 36v 
A _ afdD ~ (1 - v) (/~)~/2 = 0. [28] 0.545 ~ f~l/2 / /  1" '~ 2"5vm ^ 

Here, the density ratio So and the particle Reynolds number based on the shear rate, l~.ed, are 
defined as 

p pfd2~yy 
- -  l ~ e  d = [29 ]  So=p , ° 

The coefficients C ~, C r~, a, a r, c and Do, given by [9], I11], [14] and [15], are functions of the solid 
volume fraction, the physical properties of particles and scales of fluid turbulence. The effects of 
shear rate and particle size are reflected in l~ed. 

When l~.ed, the density ratio and solid volume fraction are specified, [27] and [28] form two 
nonlinear algebraic equations for determining the dimensionless particulate fluctuation energy and 
the fluctuation energy ratio. Alternatively, [24] and [25] may be solved for the particulate and fluid 
fluctuation energies. With k and f~ (or k and k f) known, [17] and [23] provide explicit expressions 
for the normal and shear stresses. The predictions of the model are compared with the experimental 
data in the following section. 

Stresses-Shear Rate Relationship 

Recently, I-Ianes & Inman (1985) have reported a series of experiments for rapid shearing of 
spherical glass particles of different sizes in water and in air. They presented their results in terms 
of normal and shear stresses vs shear rate for fixed solid volume fractions. The experimental data 
of Hanes & Inman (1985) for 1.1 and 1.85 mm glass beads and water mixtures are reproduced in 
figures 1-6. For these glass bead diameters and the particular solid volume fractions used in the 
experiment, [24] and [25] are solved numerically by an iteration method. The values of k and k r 
are determined for a range of shear rates between 50-270 s- i. The corresponding normal and shear 
stresses are then computed from [17] and [23] and the results plotted as the solid lines in figures 
1-6. The turbulent length macroscale is assumed to be a constant equal to 20% of the gap width 
and a coefficient of restitution of 0.9 for the glass bead particles is used throughout the analysis. 
As note by Hanes & Inman (1985), since the dimensions of the experimental apparatus used were 
only one order larger than the diameter of the particles, the solid volume fraction should be scaled 
according to 

0.64356 
v = v f----~---, [301 

where v is the effective (theoretical) solid volume fraction, ¢ is the measured solid volume fraction 
in the experiment and fm is the maximum obtainable solid volume fraction for the apparatus. The 
values of fm= 0.55 for 1.85 mm spheres and Vm = 0.64 for 1.1 mm spheres were suggested by Hanes 
& Inman (1985). 

Figure 1-4 show that the normal and shear stresses are rapidly increasing functions of both the 
solid volume fraction and shear rate. In particular, it is observed that the stresses increase in direct 
proportion to the square of the shear rate, as noted first by Bagnold (1954). Furthermore, they 
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Figure I. Variations of the total normal stresses with 
the shear rate for a 1.1 mm glass beads-water mixture: 
comparisons with the experimental data of Hanes & 

Inman (1985). 
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Figure 2. Variations of the total shear stresses with the shear 
rate for a 1.1 mm glass beads-water mixture: comparisons 

with the experimental data of Hanes & Inman (1985). 

are rather sensitive functions of v at these relatively high solid volume fractions (v I> 0.6). From 
figures 3 and 4, it is noticed that an increase of 0.01 in ~ increases the stresses several fold. Figures 
1-4 show that, even though some deviations are observed, the agreements between the predicted 
stresses and the experimental data are, generally, very good. The discrepancies observed could, in 
part, be due to the fact that the experimental setup used did not always produce an ideal two-phase 
simple shear flow. In fact, the presence of secondary flows and particle sedimentations for certain 
cases were reported by Hanes & Inman (1985). Furthermore, the ratio of the shear cell size to the 
particle diameter being of the order of 10 is rather small, which could lead to significant boundary 
effects and possible break down of the continuum assumption. These could, in part, be the reason 
for the better agreement between theory and experiment for 1.1 mm glass beads and the higher 
deviation for 1.85 mm glass particles observed in the figures. 

Figures 5 and 6 show that the predicted stress ratios for d = 1.1 and 1.85 mm are in excellent 
agreement with the experimental data of Hanes & Inman (1985). Furthermore, these figures 
indicate that the stress ratios are approximately constant over the entire range of shear rate 
considered. This observation supports the concept of a nearly constant stress ratio for a given 
material, suggested by Bagnold (1954). 

The particulate shear stresses as predicted by the present model for neutrally buoyant, nearly 
elastic particles are compared with the experimental data of Savage & McKeown (1983) for a 
1.24 mm polystyrene particles-salt water mixture in figure 7. A coefficient of restitution of 0.9 for 
the polystyrene particles is used in the analysis. For several solid volume fractions, the predicted 
variations of the particulate shear stresses with shear rate are shown by the solid lines in 
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Figure 3. Variations of the total normal stresses with 
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Figure 5. Variations of the stress ratios with the shear rate 
for a 1.1 mm glass beads-water mixture: comparisons with 

the experimental data of Hanes & Inman (1985). 

Figure 6. Variations of the stress ratios with the shear rate 
for a 1.85 mm glass beads-water mixture: comparisons with 

the experimental data of Hanes& Inman (1985). 

figure 7. This figure shows that for v = 0.429 and 0.53, the predictions of the present model are in 
reasonable agreement with the data in both trend and magnitude. For a high solid volume fraction, 
v = 0.57, figure 7 shows that the experimental data is much higher than the predicted values. This 
discrepancy may be, in part, due to the size limitation of the experimental apparatus. Furthermore, 
the maximum obtainable solid volume fraction for 1.24 mm particles in the experiment was not 
reported. Hence, the unsealed experimental value of the solid volume fraction is used for the 
theoretical predictions which seems to underestimate the data for the extremely dense case. 

Stress-Solid Folume Fraction Relationship 
In this section, the variations of the normal and shear stresses with the solid volume fraction 

for simple shear flows are examined. The stresses, given by [17] and [23], may be restated as 

tzH +pfj  = [2pf(1 _ v)f~ + ypv]k [31] 

and 

z,2 = [C~ pvd + O.545pr(l - v)A"'/2] [kl/2 (~yy) l .  [32] 

Nondimensionalizing [31] and [32] and using [26], we find 

- = IT,, +pfl  =[2(1 -v)f~+TSov]fc 
~11 [33] 
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Figure 7. Variations of the shear stresses with the shear 
rate for 1.24mm polystyrene beads-salt water mixture: 
comparisons with the experimental data of Savage & 

McKeown (1983). 
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and 

[COSov+0.545(1 - v) d ~')1/21 
~J2 - zl2 = J (/~)1,'2, [34] 

- -2 /du'~2 [(1 - v)  + vS0] 

where } is the density of the mixture, given as 

~ = pv + / ( 1  - v). [351 

For r = 0.9, Red = 100 and d = 1.1 ram, the variations of the nondimensional total normal and 
shear stresses with the solid volume fraction for glass bead particles in water predicted by the 
present model are shown in figures 8 and 9 by solid lines. The nondimensional particulate and fluid 
stresses are also shown in these figures by dotted lines for comparison. The experimental data of 
Hanes & Inman (1985) for d = 1.1 mm, scaled according to [30] to account for the finite size of 
their shear cell, are also reproduced in figures 8 and 9. These data points are obtained by averaging 
the data of Hanes & Inman (1985) for fixed values of f. Note also that lS, ea in the experiment varied 
in the range 50-300. Here, however, a typical value of l~ed = 100 is used for the model predictions. 
Sensitivity analysis results (not shown here) indicate that the nondimensional stresses change only 
slightly when l~ed varies in the range 20-2000. 

From figures 8 and 9, it is observed that the total stresses predicted by the present model agree 
reasonably well with the experimental data. These figures show that the stresses gradually increase 
with the solid volume fraction up to v ~ 0.6. Beyond this value, the stresses increase rapidly with 
a slight increases in v. The relative importance of particulate and fluid stresses for different solid 
volume fractions may be studied from figures 8 and 9. Clearly, the effect of the fluid phase is 
negligible for v ~> 0.5. For v ~ 0.40, the contributions of the fluid phase to the stresses become 
rather significant. For very small vs, the turbulent fluid stresses become dominant. However, the 
analysis was not carried out for very small vs, since the algebraic expression for E f used here may 
no longer be satisfactory. Furthermore, it is known that an equilibrium turbulent simple shear flow 
for a single-phase fluid (and dilute mixture) does not exist. 

At high density ratios, [35] shows that the fluid density has little effect. Therefore, it is more 
appropriate to use the density of particles for nondimensionalizing normal and shear stresses. 
Accordingly, the alternative dimensionless stresses 

IzJ, + P r l  Tl2 
r , l -  Z,2 = / A . . \ 2  [36] 

pd ~y)Z/du\Z' pdZ\dy j{~"] 
are introduced. These nondimensional forms were used in most of the early works for pre- 
senting the data and theoretical predictions for granular flows. Equations [33] and [34] may now 
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be restated as 

and 

~,, = [~(1 - v)fZ + 7Sov] So [37]  

Variations of the nondimensional normal and shear stresses with the solid volume fraction for 
1.1 mm dia glass beads in air predicted by the present model, together with the experimental data 
of Hanes & Inman (1985), are shown in figures 10 and 11. A value of i~ea = 100 is used in the 
calculations. Although some discrepancies are observed, it appears that the predicted stresses are 
in reasonable agreement with the data. The relative contributions of the particulate and fluid 
stresses are also studied. The results (not shown here) indicate that at such a large density ratio 
(So ~ 2000), the fluid stresses are two orders of magnitude lower than the particulate stresses. 
Therefore, the particulate stresses are essentially equal to the total stresses for the entire range of 
solid volume fraction studied here. 

The shear stress predicted by the present model for neutrally buoyant (So = 1), inelastic (r = 0.2) 
particles is compared with the experimental data of Bagnold (1954) for wax particles-water mixture 
flow in figure 12. Note that Bagnold adjusted his data to eliminate the effect of the interstitial fluid. 
Therefore, the presented data, presumably, represent the particulate stresses. The variation of the 
nondimensional total shear stress with the solid volume fraction is shown by the solid line, while 
the particulate and fluid stresses are shown by the dotted lines in figure 12. It is observed that the 
predicted particulate stresses of the present model are in good agreement with the data of Bagnold 
(1954) in both trend and magnitude. This figure also indicates that the fluid shear stress becomes 
significant for v < 0.4. Indeed, for v = 0.35 the contributions from the fluid phase become equal 
to that of the solid phase and for smaller values of v the fluid shear stress becomes dominant. For 
high values of v, however, the effect of the fluid phase is still negligible. 

Figure 13 shows the variation of the particulate stress ratio with the solid volume fraction as 
predicted by the present model. The experimental data of Bagnold (1954) are also shown in this 
figure. It is observed that the predicted stress ratio is in a close agreement with the data for v > 0.4. 

Additional results (Ma 1987) shows that both the normal and shear stresses are increasing 
functions of the coefficient of restitution. Furthermore, the nondimensional stresses increase 
gradually with the density ratio up to So ,~ 20. In addition, for moderate solid volume fractions 
and density ratios, the fluctuation energy density of the fluid phase is higher than that of the 
particulate phase. For large values of So or v, the two fluctuation energy densities become 
approximately equal. 
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Figure I1. Variation of the shear stress with the solid 
volume fraction for glass beads in air (So~2000): 
comparisons with the experimental data of Hanes & Inman 

(1985). 
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13. Variations of the stress ratios with the solid volume fraction for a neutrally buoyant 
particle-water mixture: comparisons with the experimental data of Bagnold (1954). 

CONCLUSIONS 

The turbulence model for dispersed multiphase flows developed in Part I is used to analyze the 
special case of relatively dense simple shear flows of solid-fluid mixtures. The system of governing 
equations for two-phase mixtures is simplified to a set of coupled nonlinear algebraic equations 
for the fluctuation energies. This system of equations is solved numerically by an iterative scheme 
and the normal and shear stresses for different values of the parameters are evaluated. The 
variations of the normal and shear stresses with the solid volume fraction, shear rate, density ratio 
and coefficient of restitution are studied in detail and the predicted results are compared with the 
available experimental data. Based on the observed favorable agreement of the theoretical 
predictions with the experimental data, it is concluded that the present model is capable of 
describing the turbulent simple shear flows of relatively dense two-phase mixtures with reasonably 
accuracy. 

The presented results indicate that, in general, at a relatively high density ratio (So i> 20), the 
effects of the fluid phase on both the normal and shear stresses are negligible and the particulate 
stresses are dominant throughout the entire range of the nondilute solid volume fraction. For a 
moderate density ratio (So ~< 3), however, the fluid effects become negligible only for relatively high 
solid volume fraction (v/> 0.4) suspensions. For neutrally buoyant mixture flows, the contributions 
of the fluid phase to stresses become significant for v ~< 0.4 and the fluid stresses become dominant 
for v ~<0.3. 

The present study also shows that the normal and shear stresses for the mixtures are increasing 
functions of both the solid volume fraction and shear rate. In particular, they increase in direct 
proportion to the square of the shear rate for relatively high-speed motions. For spherical particles, 
the stresses increase gradually with the solid volume fraction up to v ~ 0.6. For v > 0.6, the stresses 
increase sharply with a slight increase in v. The study also shows that the stress ratio, is 
approximately constant over the entire range of shear rate and solid volume fractions considered. 
This observation is in agreement with Bagnold's suggestion. 
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